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ON A QUASILINEAR ANALOG OF GIDAS-SPRUCK THEOREM

Theorems on nonexistence of global solutions are proved for elliptic inequalities and systems containing
the second powers of the unknown functions under the assumption of the continuity of the coefficients at the
principal nonlinear part. In the case of constant coefficients, the critical value of the parameter, such that
the nonexistence does not take place for its larger values, is found.

1. Introduction.
A famous Gidas-Spruck theorem [1] establishes the nonexistence of positive solutions

n+2 .
5" Afterwards different authors

of equation —Au = u? in R* under assumption 1 < ¢ <

have obtained analogs of that theorem for a number of semilinear equations (see references in
[2]). However investigation of quasilinear case is still far from completion. The most general
result in that field is obtained in [2], Ch. 1: theorem on nonexistence of global solution is

proved for inequality
2

~ 0
Z dz;0z; a;j(z, u) > b(z)|ul?, (1)

i,3=1

where a; ; are Carathéodory functions of n + 1 variables, satisfying condition
la; j(z, s)| < a(z)|s|’, z €R", s € (—o0,+x%), 4,7 =1,n (2)

with a positive p and non-negative a(z).

Besides that, in 3] a similar theorem is proved for inequalities with p-Laplacian i. e. for
quasiliniear inequalities which cannot be reduced to (1). All the rest known up to now
quasiliniear analogs of Gidas-Spruck theorem refer to radial solutions only (see [2] and
references therein).

In this paper theorem on nonexistence of global solution (and, under certain assumptions,
unimprovability of that result) is proved for inequality of kind (1) in which, however, condition
(2) is not satisfied, and nonlinearity in the right-hand side is not a power function; in
particular, it is allowed to be an exponential function. Let us note, that besides purely
theoretical aspect (illustration of the fact that elaborated in [2] methods are applicable
to a much more broad area of problems), the considered nonlinearities arise in different
applications (see e. g. [4] and [5]).

2. Nonexistence of global solution.

In R® we consider inequality
Au + o|Vul? + B(z)e™ < 0, (3)

where o,y are real parameters, 5(x) is a measurable a. e. positive function and there exists
a positive Ry such that 877 € Ly j,c({|z| > Ro})-
The following assertion is valid:
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THEOREM 1. Let l > 0, lim RS f 5_%(R£)d§ < 00. Then no global classical
& R—
” 1<)€<v2
solution of inequality (3) exist.

Proof. Suppose to the contrary that there exists function u(x) satisfving (in the classical
sense) inequality (3) in R". Following e. g. [6], Ch. V, § 1 (see also [7] and [8]) we define in
R" the following function:

v(x)dze%e“"'(“’)‘l. (4)
ov ou 0% o*u Ou \2 —
S AN
1en 8z, € az;’ 33{:? e 8.1:? + 8z, J n

Thus Ay = e®4(®-1 (Au + af|Vu|2) i.e. Au+a|Vul? =e! @Ay

On the other hand, it follows from (4) that v(x) has a constant sign and this is the same
as the sign of constant a. This yields:

: 1
ecm{x}-l ar Q"{.-’(.’L‘) — ]Q’U(l‘)[ = au(:{:) —1=1In Ia--u(;;[;J] = u(.’L‘) = !_n_l.cfv_(;’“ﬂi
Thus 1
Au+ a|Vul? = e le@IAy = Auv,
lav ()|

e’m(;c} — eg(lnlav(r)Hl) _ eﬁelnlav(:c)Ig' — eﬂav(x)lﬁ
Therefore the following inequality is valid:

A'U o 4 ¥ 7
ST + 6’ > o a7 a < 01
|O<"U(,’B)i * (:I:)E’ lal |1($)[ iz M

1. e.
—Av > |ala e B(x) o]+ (5)

Inequality (5) is a particular case of inequality (1) with b(z) = |a|=*lea B(z), ¢ = Ef +1,

a;j(x) = 8. Thus condition (2) is satisfied with a(z) = 1,p = 1. Then by the virtue of the
assumption of Th. 1

: a7-7 (RE)
lim R" & ——-2’d¢ = lim R* 27 f =5 (RE)dE < .
R—o0 ba-» (Rf) R—o0
1<[El<v2 1<|gl<v2

Finally, under the assumptions of Th. 1 p > 0, ¢ > p, b is measurable and a. e. positive.
Then, by the virtue of Th. 3.1 of book [2], inequality (5) has no global classical (and even
weak) solutions. We obtain a contradiction. g

REMARK 1. Inequality (3) can be written as
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The left-hand side of the latter inequality is a particular case of the left-hand side of inequality
(1) however assumption (2) is satisfied with no p. This confirms that neither velocity of
coefficients growth nor their power form are, in general, circumstances, restricting the applica-
bility of the theory elaborated in [2].

REMARK 2. In case of constant coefficient 3 Th. 1 obviously implies the following assertion
(cf. Th. 2.1 of book [2]):

‘ 2
COROLLARY 1. Let 8> 0,0< i < 5 Then inequality
a - n-—

Au+ a|Vul2 + Be™ < 0 (6)
has no classical solutions in R".
3. Unimprovability of the result.

is precise i. e. Corollary 1 is unimprovable in that

For positive « the critical value B
sense (like Th. 2.1 of book [2]). To prove that introduce (for positive ) function

Inaze
uo(z) 2 — ln(|J:|2 +1) +

(¢ is a positive parameter), and substitute it to inequality (6).

2 ¥
eTio — 6——]n(|x| +1)+ I lnace _

= EE 1

2 2
Oug 1 2 62uu“14xj—2(|x| +1);j=i','fr_1=>

0%; oAz 41 33:? Ty (|$|2+1)2

14|z|?2 — 2n|z|?2 — 2n 1 4|x|?
pup = L =20l —2n 0 1 e
) (Jz|2+ 1) ¥ (|2 + 1)
It vields:
Augy + GIVUOF + fe™0 =

1@ =20z -2n 40 |af?
at (|$r2 N 1)2 & =7 (|.T|2 1 )2 + B(ace )
— #}2 [(2 —n+ —2-3) |lz|? — ’n] + Blace)a

fy(|:r:|2+1

Jz[2+ 1 I'~’+1

1
B

2 : -2
Now suppose that l > ==t Then % 2 -

2a L4
,i.e.2—n+ :Ci < 0. Taking into account

that positivity of a 1mplles positivity of v, we obtain that for small enough ¢ function ug(x)

satisfies inequality (6) in R".
Unimprovability of Corollary 1 is proved.

4. Case of variable coefficient at high-order nonlinear terms.

The approach, described above, can be generalized for the case when coefficient « in
inequality (3) is variable. More exactly, the following assertion is true:
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THEOREM 2. Let ¢ > 1, B(x) be measurable, 3 > 0 a. e. in R", there exists Ry > 0 such that
f1-a € Ll,loc({|:r| > RU}) and

lim R" a1 / BT (RE)dE < oo.

R—oo
1<lg|<v2
Jo ot —fg{r)dr , ,
Let g € C(—00,+00) and w(s) > f 0 on (—o0,+00). Then inequality
0
Au+ g(u)|Vul* + B(x)w(u) <0 (7)

has no classical solutions in R™.

Proof. Suppose to the contrary that there exists function u(z) satisfving (in the classical
sense) inequality (7) in R". Define in R" function v(x) as f[u(z)], where

Hi) = f Joom, (8)
0
1 B 2
Then E?Ti =i ’(u)g—;, g—é = f”[-u.)(%) + f'(u )8—; =0
Hence Av = f’(u)Au + f"(u)|Vul
fg(r Ydr f'g(’r}dﬂr )
Further f'(s) = ed > 0 on (—o0, +00), f(s) = g(s)ed , and therefore

Ay = f’(u][./_\u + g(u)|Vul?].

It implies. since f’ is strictly positive on (—oc, +00), that the following inequality is valid
in R™ :

Av
. B(x)w(u) <0.
i e
q u
AY (t)d - T)dt
Then inequality % B(x) f Jgt dr e e < 0 is also valid in R" therefore inequali-
0

ty

Av (e

4 <0
7w TP Py S

is also true in R". It means, by the virtue of the strict positivity of f’ in (—oc, +00), that
in R”

Av+ B(z)|v|? <0,
but it contradicts Th. 3.1 of book [2]. O

REMARK 3. Af(u Z e [f( ] [Au + g(u)|Vu| ] f'(u) hence inequality (7) can

be written as A f(u) + 3(x)ed fg( e w(u) <0 i e as
- Z::l ax?;xj [07f(w)] > Bx)wy(w), 9)
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where w, is any function satisfying condition w,(s) > | f(s)|? on (—oo, +00) and f is defined
by (8).

Thus the left-hand side of inequality (9) is a particular case of the left-hand side of
inequality (1), however, since continuous function g is arbitrary, then condition (2), in
general, can be broken (unlike [2]); as it is shown in § 2, that takes place even in the simplest
case g = const. The right-hand side of inequality (9) is also, in general, different from the
right-hand side of inequality (1).

REMARK 4. In general, the approach, described above, can be also generalized for the case of
singular coefficient g(u) in inequality (7). However in this problem it does not lead to new
8

results. Really, applying anzatses f(s) = [eﬁflrpdf and f(s) = s*! instead of (8), we
0
can find sufficient conditions of nonezistence of global positive solutions of inequality
Au + %|Vu|2 + f(z)w(u) <0

for the cases @ < 0,0 < p < 1 and —1 < a < 0,0 = 1 correspondingly (cf. [8], § 3). It
is however easy to check that those conditions would be exactly the same as assumptions
&

of Th 3.1 of book [2] if we take correspondingly (53[67%5T1_ud7' and &/s** instead of

0
functions a; j(x, s); those a; j(x, s) satisfy condition (2) with 0 <p < 1.
5. Case of system of inequalities.

Consider the following system:
Auy + g1(w)| V| + dyws (ug, up) < 05 (10)

AU;Q -+ QQ(UQ”VUQ'? -+ dzwz(’ul, QLQ) S 0; (11)

where d; > 0 < ds, g1, g2 € C(—00,+00).
The following assertion is true:

20 +1) 2 1
THEOREM 3. Let q; > 1 < qo, max{ (¢ ), (g2 + )} >n—2. Let
q1¢2 4192
§2 T q1 81
f J g2(t)dt [ o (t)dt

eo dr €o T

L‘-’l(sla 32) Z 5 1 s w?(sla 32) 2 4 s
J g1(r)dr [ g2(7)dr

eo eo

on (—oo, +00). Them system (10),(11) has no classical solutions in R™.

1) satisfying (in
U2

the classical sense) system (10),(11) in R". Then on R we define vector-function

(e o)

Proof. Suppose to the contrary that there exists a vector-function (
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& T
(t)dt
where f;(s) = /eﬂfg} dr; j =1,2. We obtain (see proof of Th. 2) that

0

Avj = f(u) [Au; + g;(u;)[Vuy ],

2 s ; i
and f], f are strictly positive on R*. It means that inequalities ﬁ + djwj(u1, uz) < 0 are
3\t
valid in R” for j = 1,2. By the virtue of the condition of Th. 3 it implies (similarly to the
proof of Th. 2) that inequalities

Av ug) | Av uy)]®
oy e <O eyt <0
are also true in R". From that we deduce (since f, fi are strictly positive) that vector-
function C”;) is a classical solution of system
Avy +d;|ve]" <0, z € R, (12
Avg + da|1|®? <0, z € R™. (13)

However, by the virtue of Th. 17.1 of book [2] system (12),(13) does not have even week

2(q1 +1) 2(g2 + 1)}

: >n—20¢€(d,ds), 1€ (g1,9)

e ¢ = : ( 1 z) (¢1,92)

We obtain a contradiction. O

solutions in case max {

REMARK 5. Instead of (10),(11) one can consider the following system of more general kind:
- du; \ 2
Aui s Zaij(x: ulaufz) (_t) Sk diwi(my 'U.],‘UQ) S 0}
g=1 ax}

whose coefficients satisfy for i = 1,2, j = 1,n the following conditions:
there exist gy, g2 € C(—o00,+00) such that

ai;(x, 51,52) > gi(si),

82 r q1 §1 r
[ g2(t)dt Ja1(t)dt
eo dr €o T
35 ol 55,0
wl(iE,S],SQ) il 51 $w2($: 31132) = 52
J g1(7)dr J g2(7)dr
eo €eo

on R* x R! x R!.
In that case Th. 3 remains true under its conditions regarding relations between parameters n,

a1, g2.
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